Year: 2013 (page 2 of 36)

bacteria aid chemotherapy response

Bacteria

Image from Discover Magazine

In the latest edition of Science magazine, two papers describe how bacteria in the stomach and intestines can help improve chemotherapy outcomes – at least in mice.

In the first study, Iida et al. dosed a group of mice with antibiotics for a prolonged period before exposing them to cancer therapies. The antibiotic treatment eliminated their populations of gut microbes. Tumors in these mice did not shrink in response to the therapy as they did in the control group, which received no antibiotics. Similarly, mice brought up in a sterile environment also had showed no chemotherapeutic response. Mice brought up in sterile environments never develop diverse microbial populations since they don’t get exposed to them. Mice lacking the bacterial populations don’t show the production of a protein called tumor necrosis factor that generates the tumor killing response in the organism.

The researchers also found that when the chemotherapeutic drug oxaliplatin was administered to mice who were germ-free or given antibiotics, the cancer killing response was much weaker and ineffective when compared to the control.

The second group of researchers performed similar studies with a chemotherapy drug called cyclophosphamide, or CTX. CTX is used to treat breast cancers and some brain cancers and works by increasing the number of Th17/Th1 immune cells. As in the previously mentioned study, mice that were dosed with antibiotics or that were raised in sterile environments exhibited a weaker anti-tumor response to the CTX.

Results from both of  these studies indicate that microbes influence anti-tumor responses. So what does that mean for cancer patients? Dr. Zitvogel, who led one of the research teams, is taking considering the implications saying “We are going to be very careful about prescribing antibiotics during chemotherapy.” Dr. Trinchieri, who led another team, says that we should be cautious about extrapolating any results from mice to humans. He also suggests studies in healthy humans examining the effect of gut bacteria on immune cell production. His sentiment would likely be seconded by most scientists. As a matter of fact, Science magazine has another article in the same issue titled “When Mice Mislead”.

breaking the rules

Cesium fluoride

Cesium may bond to fluorine with inner shell electrons at high pressures.

We all learn in introductory chemistry that valence electrons are the only electrons capable of bond formation. But, Scientific American reports on a paper published in the September 23rd issue of Nature Chemistry that predicts that inner shell electrons might form a chemical bond under the right conditions.  In the paper, Mao-sheng Miao calculates that at very high pressures (over 30 gigapascals) cesium’s inner electrons will be able to bond to fluorine, forming at least two stable compounds (CsF3 and CsF5).

Cesium, all the way on the left side of the periodic table, has one superfluous electron in its outer, or sixth shell. Fluorine, on the other hand, is toward the far right of the table, just next to the column of noble gases with completely full shells (which is why noble gases are notoriously unreactive—they have little incentive to gain or lose electrons) and is one electron short of a full outer shell. “Under normal pressure, cesium gives an electron completely to fluorine and they bind together,” Miao says. “But under high pressure, the electrons from cesium’s inner shells start to form molecules with fluorine.”

Miao identified two compounds that could form and remain stable up to very high pressures: cesium trifluoride (CsF3), where cesium has shared its one valence electron and two from an inner shell with three fluorine atoms, and cesium pentafluoride (CsF5), where cesium shares its valence electron and four inner-shell electrons to five fluorine atoms.

The article continues, saying that these compounds have yet to be generated in lab thought it should be possible as the require pressures can be generated by modern equipment.

frederick sanger has died

Fred Sanger

Frederick Sanger (1918-2013)

Frederick Sanger, a two time Chemistry Nobel prize winner, died this week at age 95. He was famous for his work sequencing oligonucleotides and proteins. Read about the man and his work at Chemistry Blog.

//ookroush.com/4/4535925