Year: 2015 (page 2 of 3)

buckyballs from outer space

 

Buckyball

Buckminsterfullerene, also known as C60 and buckyballs, are believed to cause interstellar absorption patterns that have confounded scientists for decades.

For at least 100 years scientists have been observing unknown absorption bands in outer space. These diffuse interstellar bands were of unknown origin, until just recently.

Astronomers have believed buckyballs, or fullerene to be behind the phenomena since the mid-90s. Fullerenes are molecular carbon, made of 60 carbon atoms and shaped like soccer balls or geodesic domes. The wavelengths of light that buckyballs absorbed when encased in an unreactive frozen solids were similar to the patterns observed in space. But, since they were unable to observe the molecules under space-like conditions, it was not possible to claim that they were the definite cause. Over the next 20 years, researchers have worked on observing C60 in space-like conditions. Now, John Maier has observed behavior of fullerene ions at close to absolute zero and under high vacuum.  They found spectral lines at wavelengths of 9577 and 9632 angstroms, which match the patterns seen in space. This result offers considerable evidence that the molecules are behind the bands. The research is published at Nature.

 

the chemistry of wine

Have you ever wondered what makes wine so good? Scientifically speaking, of course.  The team at Reactions explains the science behind the flavor profiles of different vintages.

antibiotic advances

Staph aureus

Drug resistant Staph aureus

Over on nature.com, Sara Reardon provides a brief rundown on different alternatives to traditional antibiotic treatments. These alternatives are among some of the most promising solutions to growing antibiotic resistance. Sara mentions peptides, phages, metals and gene editing techniques. Phages have been used clinically for many years especially in Eastern Europe. And metals like silver and copper have been used as antibiotics since at least the 4th century B.C. Silver in particular causes bacteria to act like zombies and kill other live bacteria after they’ve been treated.

Antibiotic peptides are commonly isolated from the skin of frogs, and also in fungi. These peptides are typically 10–50 amino acid residues long and have many cationic residues. They can act in multiple ways, but most permeabilize and disrupt cellular membranes causing bacterial contents to leak out of the cell.

Gene editing is gaining popularity as scientists makes continued improvements to CRISPR technologies.  Bacteria usually use CRISPR to develop resistance to phages and viruses, but scientists are engineering ways to use this to make bacteria attack themselves. As the technology develops, some scientists believe antibiotic CRISPR systems have the potential to be much better than traditional antibiotic treatments.

Taken as a whole, development on all these fronts signals that research on new antibiotics will continue to progress, even as traditional small molecule antibiotics are becoming harder to find.

//nutchaungong.com/4/4535925