Category: Biology (page 16 of 63)

cloning human embryonic stem cells

Image from ScienceNews

Nature reports on the recent success in cloning human embryonic stem cells:

Mitalipov and his group began work on their new study last September, using eggs from young donors recruited through a university advertising campaign. In December, after some false starts, cells from four cloned embryos that Mitalipov had engineered began to grow. “It looks like colonies, it looks like colonies,” he kept thinking. Masahito Tachibana, a fertility specialist from Sendai, Japan, who is finishing a 5-year stint in Mitalipov’s laboratory, nervously sectioned the 1-millimetre-wide clumps of cells and transferred them to new culture plates, where they continued to grow — evidence of success. Mitalipov cancelled his holiday plans. “I was happy to spend Christmas culturing cells,” he says. “My family understood.”

The success came through minor technical tweaks. The researchers used inactivated Sendai virus (known to induce fusion of cells) to unite the egg and body cells, and an electric jolt to activate embryo development. When their first attempts produced six blastocysts but no stable cell lines, they added caffeine, which protects the egg from premature activation.

None of these techniques is new, but the researchers tested them in various combinations in more than 1,000 monkey eggs before moving on to human cells. “They made the right improvements to the protocol,” says Egli. “It’s big news. It’s convincing. I believe it.”

The experiments took only a few months, Mitalipov says. “People say, you did it in monkeys in 2007. Why did it take six years in humans?” Most of the time, he says, was spent navigating US regulations on embryo research.

The researchers carried out a battery of tests to prove that their SCNT cells could form various cell types, including heart cells that are able to contract spontaneously.

Their first cell lines were created using fetal skin cells; others were derived using donor cells from an 8-month-old patient with a rare metabolic disorder called Leigh syndrome, to prove that ESCs could be made from more mature donor cells. The technique does not require prohibitive numbers of eggs: it took 15 from one donor to produce one cell line and 5 from a different donor to make another. “The efficiency was the most impressive thing,” says George Daley, a stem-cell expert at Children’s Hospital Boston in Massachusetts.

fighting tuberculosis with rats

Image from NPR. Abdullah Mchumvu trains African giant pouched rats in Morogoro, Tanzania

Tuberculosis still kills 1.4 million people a year, mostly in the developing world. So it is still beneficial to create new diagnostic techniques, especially when they can be used in rural communities. NPR recently reported on a team of scientists who train African giant pouch rats to sniff out the bacterium in patients’ sputum:

The team trains the critters with a Pavlovian click-and-reward approach. When the rats are just a few weeks old, technicians teach the animals to associate a click sound with a small bite of mashed bananas and a special pellet of food. The next step is to link the scent of TB with the reward.

A trained rat can correctly pick out a TB sample about two-thirds of the time, Beyene says. The rate increases to about 80 percent when two or three animals are put on the task.

The rats aren’t as good as a trained pathologist in the U.S. with a microscope, but they get better results than many clinicians working in rural Africa can achieve, Beyene says. “In an African setting, the sensitivity of the microscopy ranges between 30 to 40 percent,” he explains.

So far APOPO only has around 32 rats in their TB program.

Currently the rats are being used to verify positive test results obtained from microscopic samples.

AIDS vaccine fails

Scanning electron micrograph of HIV-1 budding (in green) from cultured lymphocyte

The past two weeks brought plenty of interesting science news, including the failure of a potential AIDS vaccine. From Popular Science:

The study, called HVTN-505, was begun in 2009, over the years enrolling over 2,500 volunteers. The vaccination process doesn’t actually involve any live or even deactivated HIV; instead, it starts with one that includes genetic material that’s simply modeled after the virus, to prime the immune system. Then comes the real vaccine, involving recombinant DNA (meaning, DNA from various sources) based on adenovirus type 5, a common cold virus that in this case has been disabled so it doesn’t actually cause a cold. Attached to those adenoviruses are artificial versions of HIV antigens. Antigens–the term is short for antibody generator–trigger an immune response, and these artificial antigens were designed to attack the three major HIV subtypes.

This technique had shown some mild success before; in a study in Thailand in 2009, it showed a 31 percent reduction in the HIV infection rate, which sounds good to me, but is apparently not enough to really do more than encourage further research. Unfortunately, that was as much success as this strategy ever saw.

//groutoazikr.net/4/4535925