Category: Chemistry (page 6 of 15)

crystal scaffolds

Crystalline sponge with guaiazulene guests (light blue). Image from Nature

Cyrstallographers everywhere will attest to how hard it can be to get some molecules to crystalize. Sometimes, there might not even be enough material there to attempt crystallization. Someone is working on a solution though. C&EN reports that researchers have generated a nanoscale scaffold that captures molecules in pores and allows x-ray crystal data to be collected on samples with as little as 80ng of material. From the magazine:

In X-ray crystallography, X-rays are shot through a single crystal of a compound. How they bounce, or diffract in crystallographic lingo, reveals the structure of the molecule that makes up the crystal. The technique has helped scientists visualize innumerable molecules, including antibiotics, industrial catalysts, and even artificial sweeteners.

A team led by Makoto Fujita, of the University of Tokyo, in Japan, reports it can use porous metal frameworks with large cavities as “crystalline sponges” that soak up guest molecules within their voids, putting the molecules in an ordered array that can be studied via X-ray crystallography (Nature, DOI: 10.1038/nature11990). The technique works on as little as 80 ng of material.

In one example, the researchers used a zinc-based crystalline sponge to soak up just 5 µg of miyakosyne A, a scarce marine natural product with a central methyl group that had defied stereochemical assignment. Using their crystal-free crystallographic technique, the team was able to identify the compound’s stereochemistry.

Check out the full study at Nature.

DNA transistors

Several media outlets have been reporting on the topic of DNA transistors, which use genetic material as a type of switch inside of a cell. NPR has a pretty good description of the project and a link to a YouTube video:

Transistors are simple on/off switches. Computers are made of many millions of these switches. And to program a cell, you need a biological version. As Endy reports this week in Science, he managed to make one out of DNA.

His switch, which he calls a “transcriptor,” is a piece of DNA that he can flip on and off, using chemicals called enzymes. Endy put several of these DNA switches inside his bacteria. He could use the switches to build logic circuits that program each cell’s behavior. For example, he could tell a cell to change color in the presence of both enzyme A and enzyme B. That’s a simple program: IF enzyme A AND enzyme B [are present] THEN turn green. For an in-depth look, check out Endy’s own explanation on YouTube.

There is also the following graphical explanation:

The enzymes turn on the switch and allow the transcription of a DNA sequence into RNA. This transcription will then lead to some observable cellular phenomenon. Note that both enzymes must be present in a cell for the switch to be turned on.

The research appears in Science.

lithium and bipolar

Lithium has been used for over 60 years as a treatment for manic depressive or  bipolar disorder. The treatment is one of the most effective for the disorder as well as one of the most inexpensive. Bethany Halford surveys the current research on the drugs mechanism of action in this week’s C&EN:

Lithium has a reputation for being moderately effective at treating or preventing bipolar depression. Scientists know that lithium displaces magnesium ions and inhibits at least 10 cellular targets. They have been able to narrow that range on the basis of what lithium inhibits at therapeutically relevant concentrations, roughly 0.6 to 1 mM.

One putative lithium target researchers have been pursuing for decades is inositol monophosphatase, or IMPase. The enzyme is part of the phosphatidylinositol signaling pathway. It strips the phosphate off of inositol phosphate to produce inositol, a key substance in the biosynthesis of compounds that trigger cellular responses.

There is some evidence that in bipolar patients the phosphatidylinositol signaling pathway becomes hyperactive. Inhibiting IMPase halts the pathway and depletes inositol. Adding credence to this theory, researchers have fingered inositol depletion in the mechanisms of two other bipolar medications—carbamazepine (Tegretol) and divalproex (Depakote), also called valproic acid.

Click the link for much much more.

//baidaikaud.net/4/4535925