Category: Chemistry (page 8 of 15)

the chemistry of love

Oxytocin

Oxytocin

Oxytocin seems to play a big role in fostering the bonds of love and empathy. From Scientific American:

One way to clarify that question is to give individuals oxytocin rather than just measure naturally occurring levels. In experiments by couple therapist and researcher Beate Ditzen at the University of Zurich, couples each sprayed a liquid containing oxytocin up their noses (which ensures that the hormone reaches the brain). Ditzen then got them to talk with each other about an issue that both partners said often lead to disagreement or fighting, such as who did the housework or how they spent their free time. She observed how they communicated with each other during the discussion compared with couples who didn’t get the hormone.

The first time Ditzen and her colleagues did this experiment they found that for both men and women oxytocin improved communication and lowered cortisol, a stress hormone. But in a recent study published in Social Cognitive and Affective Neuroscience, Ditzen and her colleagues measured salivary alpha-amylase (sAA)—an enzyme tied specifically to social stress—and found that men and women responded differently. Women who got oxytocin showed a decrease in sAA whereas men showed an increase and reported feeling more intense emotions. Counterintuitively, these men were also better at communication during conflict: they smiled more, had more eye-contact and were more open about their feelings. These behaviors are essential for peaceful conflict resolution.

Much much more at the link. Happy Valentine’s Day!

electric bacteria

Electric bacteria

Bacteria on the surface of an electrode

Scientists have taught bacteria to feed on electricity. Because the bacteria feed on iron, they were well suited for this kind of study. From Popular Science:

Researchers at the University of Minnesota, St. Paul, have coaxed a species of bacteria into trading their usual diet of partially-oxidized iron for a small current of electricity–a trick that may eventually make the microorganisms useful producers of biofuels.

The bacterium involved in the study was Mariprofundus ferrooxydans, a species that makes its home around hydrothermal vents on the seafloor. Like other iron-oxidizing bacteria, M. ferrooxydans relies on a form of soluble iron, called ferrous iron, or Fe(II), as a source of the electrons it needs to breathe. When plenty of oxygen is present, ferrous iron readily gives up its extra electron to the oxygen, to become the more stable Fe(III), or ferric iron–the kind of iron oxide we know of as rust. But in lower-oxygen environments, M. ferrooxydans’ can do oxygen’s job for it, thereby gaining energy from the extra electron.

In their experiment, the researchers deposited some M. ferrooxydans onto the surface of an electrode, which was tuned to release electrons at the same energy level that Fe(II) would provide. To get the organisms started in their new habitat, the scientists also added some of the bacterium’s natural food–Fe(II)–to the mix.

After letting the microbes multiply over the surface of the electrode for four weeks, they scraped some away and started a new colony on an electrode with no Fe(II) around. Amazingly, the bacteria continued to thrive, even after some were transplanted onward to a third electrode. Some nutrients were still provided to this colony, the study noted, but in amounts much too small to support the bacterium’s apparent growth.

brighter OLED screens

From C&EN, via nature.com

A new set of organic molecules might be able to bring us brighter screens for the many technologies we use today. From C&EN:

Researchers in Japan have designed and synthesized low-cost compounds based on carbazolyl dicyano­benzene (CDCB) and show they efficiently emit light in response to an electric current (Nature, DOI:10.1038/nature11687). The family members, which differ in the number of carbazolyl units and the presence of other organic substituents, emit a wide spectrum of colors ranging from sky blue to orange.

The earliest OLED displays, introduced roughly 25 years ago, were based on all-organic fluorescent materials that inherently convert just a small fraction of electrical energy input to light. OLEDs featuring phosphorescent metal-organic compounds proved to be more efficient emitters, and they are now the standard in this area. Yet they are costly because they include rare metals such as iridium and depend on exotic metal catalysts for their synthesis.

By tailoring the structure of compounds that include electron-donating carbazole groups and electron-accepting dicyanobenzene units, Kyushu University chemists Chihaya Adachi and Hiroki Uoyama and coworkers have now designed metal-free compounds with a tiny energy gap between the molecules’ excited singlet and triplet electronic states. The low-cost, all-organic compounds were made in one step from commercially available starting materials. Because of their electronic structures, the compounds exhibit electroluminescent efficiencies comparable to today’s best phosphorescent OLEDs.

 

More here and at nature.com