Category: Health (page 14 of 27)

fighting the flu

Tamiflu aka Oseltamivir

Oseltamivir, also known as Tamiflu, inhibits the enzyme neuraminidase in influenza virus. The lab of Stephen Winters has developed new neuraminidase inhibitors that bind the enzyme covalently, and may have potential as new antiviral drugs.

Each year untold numbers of people come down with the flu during flu season. There are several antiviral medications that can be used to treat the flu and get rid of the infection. The most popular of these is Tamiflu, which works by inhibiting an enzyme called neuraminidase present in the influenza virus. Neuraminidase is the “N” in the strain names (i.e. H1N1, H3N2, etc.). With prolonged exposure, flu strains can become resistant to antiviral medications like Tamiflu. So there is a need for new drugs to be developed. Chemical and Engineering News covers a recent Science paper from the lab of Stephen G. Winters that investigates new neuraminidase inhibitors:

Four neuraminidase inhibitors are approved or in development for postinfection treatment. Tamiflu is the most popular, but flu can evolve into strains insensitive to it. Relenza is administered by oral inhalation, which has limited its use. Peramivir was withdrawn from a Phase III trial last year, and laninamivir is scheduled to enter Phase II, although both are approved in Asia.

The new compounds emerged from efforts by Stephen G. Withers and coworkers to determine how neuraminidase works molecularly (Science,DOI: 10.1126/science.1232552). Their study shows that neuraminidase catalyzes sialic acid cleavage by a mechanism involving a covalent intermediate. They determined the structure of the intermediate and designed sialic acid analogs that bond covalently to the viral neuraminidase active site but release very slowly, thus disabling it, and do not inhibit human neuraminidase. The compounds may evade viral resistance more effectively than Tamiflu because their structures more closely resemble that of sialic acid. Also, covalent bonding permanently inactivates the neuraminidase active site; Tamiflu and the three other inhibitors bind noncovalently.

The Centre for Drug Research & Development, in Vancouver, is seeking private-sector partners and investors to help develop the new inhibitors commercially.

breast feeding promotes development of gut bacteria

Gut bacteria

Gut bacteria

The New York Times describes an experiment on how gut bacteria develop in infancy:

Seeking to understand how the microbes are developed in early life, a team of Canadian researchers collected samples (dirty diapers, frozen) from newborns at birth and again at 3 months. They found that many children who were delivered by C-section all but lacked a group of critical bacteria found in those who were delivered vaginally. The gut bacteria in children who were fed only formula, rather than breast milk, was also significantly different from those who were given at least some breast milk.

new leprosy test

Though the article is light on details, The New York Times reports on the development of a new test for leprosy. The test works in a similar manner to a pregnancy test. The new test would allow earlier diagnosis and provide results within 10 minutes.