Category: Health (page 18 of 27)

resistant bacteria from labs enter rivers in china

bacteria

In China, resistant bacteria from molecular biology experiments are turning up in rivers and streams. Molecular biologists use different resistant strains in order to clone bacteria and produce different proteins. In the US, academic and industrial labs have implemented steps to prevent these resistant genes from being introduced into our environment. China, it appears, still has a ways to go before they get a handle on this. From C&EN:

But because this technique is still commonly used in molecular biology labs, some researchers have been concerned that these experiments could release resistance genes into the environment. To search for antibiotic-resistance genes introduced by synthetic plasmids, Jun-Wen Li at the Institute of Health and Environmental Medicine, in Tianjin, China, and his colleagues took water samples from six Chinese rivers downstream of densely populated cities. They extracted plasmids from the samples and transferred the DNA into Escherichia coli. Then they screened the bacteria for a gene commonly used in academic and industrial labs that confers resistance to the antibiotic ampicillin. To determine if a gene in a sample came from a manmade source, they used polymerase chain reaction to look for sequences unique to several synthetic plasmids.

The researchers found synthetic resistance genes in all six rivers. Of all of the ampicillin-resistance plasmids they found in the rivers, about 27% had the synthetic vector-sourced gene.

More here.

platelets confer resistance to parasites

Platelets prevent parasitic infestation. Image from Sciencemag.org

From Science magazine this week, a report on how platelets express genes to help kill parasites. An excerpt from the perspective:

The six Plasmodium parasite species that cause disease in humans (P. falciparum, P. vivax, P. malariae, P. ovale wallickerie, P. ovale curtisii, and P. knowlesi) appear to have independently colonized hominids and influenced the genetic composition of different human populations (3). For example, the genes responsible for sickle cell anemia, thalassemia, and glucose-6-phosphate dehydrogenase deficiency have a higher frequency in populations where malaria is, or was once, endemic. These genes provide protection against severe malaria syndromes and likely evolved in response to the disease by providing a survival advantage (4). Another of these genes encodes the Duffy-antigen receptor for chemokines (DARC/Fy glycoprotein/CD234) found on red blood cells. This protein also acts as a receptor for P. vivax (5), and human red blood cells lacking this receptor are resistant to invasion by this species and by P. knowlesi (67). The impact of this genetic selection can be seen in the geographical distribution of P. vivax. This parasite is spread throughout tropical regions of the world, but is rare in large areas of central and western Africa where many individuals lack Duffy-antigen receptor expression on red blood cells. Thus, this “Duffy-negative” phenotype appears to have evolved as an innate resistance mechanism to P. vivax infection.

McMorran et al. extend previous work that demonstrated an important role for platelets in resistance to malaria (8) by identifying platelet factor 4 (PF4) as a key molecule in platelet-mediated killing of P. falciparum. PF4 is released from α granules in activated platelets to promote blood coagulation (9). It binds the Duffy-antigen receptor, along with several other chemokines (10). McMorran et al. found that a functional Duffy-antigen receptor is required for the antiparasitic activity of PF4.

Also check out the scientific research paper here [subscription required].

zinc cures jellyfish stings

 

jellyfish

A jellyfish. Image from blogs@ Cape Breton University

Looks like scientists may have stumbled upon a new cure for jellyfish stings. Scientists at the University of Hawaii found zinc gluconate inhibits the action of jellyfish venom. From Scientific American:

Yanagihara used electron microscopy to visualize the venom’s affects on blood cells, and as suspected, found that venom porins create holes that lead to cell rupture. But as previous clinical research had shown, the cells bursting wasn’t the real issue; Yanagihara found that instead, for several minutes before they break apart, red blood cells leaked potassium. Animal models confirmed that this sudden spike of potassium in the blood stream, termed hyperkalemia, is what leads to rapid changes in heart rate and function and, ultimately, the cardiovascular collapse that causes death by jellyfish. With the physiology of stings revealed, Yanagihara could finally start the laborious task of finding a way to stop the venom in its tracks.

Jellies aren’t the only animals that create porins. “The structural motif of the cubozoan porin reminded me of the bacterial porins,” said Yanagihara. “I scoured that literature to look for inhibitors of the self assembly of those pore forming toxins and discovered studies from the 1940s even as far back as the 1890′s citing zinc ion as useful in the inhibition of bacterial driven lytic reactions.” Yanagihara tested over 100 compounds to see if they inhibited jellyfish venom, and found that one of the safest—zinc gluconate—worked well.

Scientists aren’t 100% sure how zinc compounds inhibit the porins, but they believe that the zinc disrupts the binding domains necessary for the proteins to assemble to form pores. In in vitro models, Yanagihara found that a low dose of zinc gluconate completely prevented the venom’s blood cell busting effect. She then tested the compound in animal models, and found it worked better than the commercially available antivenom for box jelly stings, keeping the mice alive more than twice as long as the antivenom.

//neeceeglogu.net/4/4535925