Category: Immunology (page 6 of 7)

malaria vaccine is a let down

A vaccine for malaria that was in clinical trials turns out not to produce robust effects. In a clinical trial only about 30% of study participants gained immunity as a result of the vaccine. From the NY Times:

Three shots of the vaccine, known as RTS, S or Mosquirix and produced by GlaxoSmithKline, gave babies fewer than 12 weeks old 31 percent protection against detectable malaria and 37 percent protection against severe malaria, according to an announcement by the company at a vaccines conference in Cape Town.

Last year, in a trial in children up to 17 months old, the same vaccine gave 55 percent protection against detectable malaria and 47 percent against severe malaria.

The new trial “is less than we’d hoped for,” Moncef Slaoui, Glaxo’s chairman of research and development said in a telephone interview. “But if a million babies were vaccinated, we would prevent 260,000 cases of malaria a year. This is a disease that kills 655,000 babies a year — 31 percent of that is a very large number.”

The company, which has already spent more than $300 million on the vaccine, wants to keep forging ahead, he said, “but it is not just our decision.”

The research was at least partially funded by the Bill & Melinda Gates Foundation.

new treatments for food allergies

Food allergies are caused when an IgE antibody is produced in response to a protein from the food in question. This has lead scientists to believe that IgE could be a potential drug target for allergy treatments. From C&EN:

One treatment aimed at IgE that’s already commercially available is omalizumab. Comarketed by Genentech and Novartis under the brand name Xolair, this therapeutic is a monoclonal antibody designed to mop up free IgE in a person’s body.

“An ordinary antibody to IgE could kill people,” says Tse Wen Chang, originator of the anti-IgE concept and a distinguished research fellow at Academia Sinica, in Taiwan. That’s because if the antibody stuck to IgEs that were already bound to mast cells and basophils, the interaction might trigger anaphylaxis via histamine and those other inflammatory compounds.

“So you can imagine that when I approached people initially with the idea, they were very concerned,” Chang says. This was in 1989, soon after Chang had cofounded a small biopharmaceutical firm called Tanox. He was looking for a corporate partner to fund the company’s anti-IgE program.

Chang eventually convinced Tanox’ potential partners and others in the immunology field that his IgE antibodies were safe. He demonstrated that the therapeutics, screened and selected during synthesis, bind free IgE and not mast-cell-bound IgE. After a partnership with Novartis, a few infamous legal disputes with Genentech, some clinical trials, and an eventual buyout by Genentech in 2007, Tanox disappeared from the pharma scene.

But the anti-IgE concept, in the form of Xolair, has lived on. The monoclonal antibody was approved in 2003 by the Food & Drug Administration for use in patients with moderate to severe persistent cases of asthma. The injectable therapeutic is now involved in more than 100 clinical trials for various types of allergies, including for the treatment of chronic hives and eczema.

Xolair hasn’t made as much headway, though, in treating food allergies, Chang says. A small study, published last year, aimed to test whether peanut-allergy sufferers could benefit from regular injections of the antibody (J. Allergy Clin. Immunol., DOI: 10.1016/j.jaci.2011.01.051). But the trial was discontinued because a few patients had severe anaphylactic reactions to test-doses of peanuts—given to them prior to Xolair—and a safety committee deemed the experiment too risky.

….

So food allergists haven’t given up on Xolair. Instead of being used by itself, the antibody is now being administered in combination with oral immunotherapy: Phase I and Phase II trials are under way to see whether the therapeutic can improve the outcome of milk- and peanut-allergy treatments.

hiv antibodies

Schematic diagram of an HIV virus and it’s coat glycoprotein bound to an antibody. Image from Corpus Christi College Oxford.

A South African study offers hope that an HIV vaccine can be developed. Certain changes in the virus’ coat proteins appear to trigger a more robust production of antibodies. From NPR news:

One of the women had neutralized 88 percent of 225 HIV virus subtypes after three years with the virus, while the other woman had neutralized 46 percent of 41 subtypes after two years of infection.

The researchers found that a specific change in the coating of the HIV virus appeared to be the trigger for the women to produce antibodies that could thwart its entry into cells.

One reason the HIV virus has proven so difficult to fight is that it is skilled at hiding from antibodies that can block the virus from attacking cells. But researchers believe that the more they understand how the antibodies develop, the better chance they have at developing an HIV vaccine.
 

The original research paper appears in Nature magazine.

//ourtoonoolr.net/4/4535925