Tag: RNA

RNA probing

Each red dot is a single probe bound to the RNA target. The cell nucleus is stained blue. Note the increase of fluorescence over time.

Scientists have developed a probe to bind and fluoresce in the presence of a single copy of viral RNA. Up until now, probes fluoresced nonspecifically to other nucleotides limiting their usefulness. A group of scientists use the FISH (fluorescence in situ hybridization) technique to improve things. From CEN:

Yong Chen, at the University of California, Los Angeles, and his colleagues wanted to design a more sensitive assay. They built a long single-stranded DNA containing about 1,000 copies each of two sequences: one complementary to a portion of the RNA that makes up the influenza A virus and another complementary to a fluorescently labeled strand of DNA. They designed the sequences so that they didn’t complement sequences found in their target cells.

To test their new probe, the scientists added it to dog kidney cells infected with influenza A. They had chemically frozen the cells’ biomolecules before adding the probe. After washing away unbound probe, they added the fluorescently labeled strand of DNA.

When the researchers looked at the cells under a microscope, single molecules of viral RNA appeared as bright red dots. They assumed their probes bound a single RNA molecule because the viral nucleic acid concentrations early in the infection were much smaller than that of their DNA probe. The scientists didn’t see the glowing spots in uninfected cells, indicating very little off-target binding, Chen says. His team repeated the experiment with infected cells treated with the antiviral drug ribavirin. Six hours after infection, the amount of viral RNA in those cells was one-twelfth that of untreated cells.

DNA, RNA, XNA

A DNA helix

DNA & RNA genetic information to be stored and propagated through the generations. Now researchers have created new molecules called XNAs by replacing the sugar molecules on the DNA or RNA phosphate backbone with an analog. From Science News:

The researchers, led by Philipp Holliger of the MRC Laboratory of Molecular Biology in Cambridge, England, did make completely new genetic molecules. In the backbone of every DNA molecule there are repeating units of deoxyribose sugar, in the RNA backbone it’s ribose sugar. Instead of those sugars, the various XNAs have different molecules in their backbones: a five-carbon sugar called arabinose in ANA, the ringed structure anhydrohexitol in HNA, and threose, a four-carbon sugar in TNA. The scientists also created XNA molecules called FANA (2´-fluoroarabinose), CeNA (cyclohexene) and LNA (“locked” ribose analog).

In a second bioengineering feat, the researchers created special enzymes for the XNAs so that they could evolve. This requires enzymes that can “read” the order of molecular components in a strand of XNA and use that information to build a complementary strand of DNA. Working with an enzyme from a sulfur-loving microbe, the team selected for versions that could “read” each of the XNAs. The researchers also made enzymes that could do the reverse: read DNA and use that information to build XNA.

Because the XNAs can’t copy themselves without help from DNA, it’s not truly synthetic life, says Joyce. But the molecules do undergo good old-fashioned evolution. With HNA, for example, the researchers created a random population of HNA molecules, then exposed them to a bunch of target molecules (such as proteins or RNA) for the HNA to attach to. Most of the HNAs didn’t do diddly-squat, but a fraction were slightly better at connecting to the target molecules.

More here and here.

//glaultoa.com/4/4535925