Page 25 of 111

more on the antibiotic resistance crisis

bacteriaThe New York Times editoriaizes on the CDC study that found 23,000 people a year die each year due to infections from drug resistant bacteria:

The new report, for the first time, puts 17 drug-resistant bacteria and a dangerous fungus into three categories based on how big a threat they pose. Three were deemed “urgent threats,” including a bacterium, known as CRE, that is resistant to most drugs and kills a high percentage of people who become infected with it. Though it is rare, causing 600 deaths a year, it has been identified in health facilities in 44 states. Further spread of the germ or transfer of its resistance genes to other germs could lead to a “nightmare scenario,” the agency said. Twelve drug-resistant strains, including such common germs as salmonella, tuberculosis and MRSA, were classified as “serious threats.”

Scientific American also covers a paper published in JAMA Internal Medicine that links pig manure fertilizer to MRSA (methicillin-resistant staphylococcus aureus infections in humans. From Scientific American:

The team analyzed cases of two different types of MRSA — community-associated MRSA (CA-MRSA), which affected 1,539 patients, and health-care-associated MRSA (HA-MRSA), which affected 1,335 patients. (The two categories refer to where patients acquire the infection as well as the bacteria’s genetic lineages, but the distinction has grown fuzzier as more patients bring MRSA in and out of the hospital.) Then the researchers examined whether infected people lived near pig farms or agricultural land where pig manure was spread. They found that people who had the highest exposure to manure — calculated on the basis of how close they lived to farms, how large the farms were and how much manure was used — were 38% more likely to get CA-MRSA and 30% more likely to get HA-MRSA.

Expect to hear about this more and more.

23,000 people a year die from superbugs

Staph aureus

Drug resistan staph aureus

That’s the result of the latest study from the CDC which you can read here. At least 2 million people annually are infected by resistant bacteria. Popular Science has more on the results of the study and on resistant bacteria in general.

a forever flu shot

 

Flu Shot

Once again it’s time for flu vaccinations and Science magazine teases us with the idea of a once in a life time flu vaccine:

Flu vaccines trigger production of antibodies that attach to hemagglutinin, a protein on the surface of the virus that helps it infect cells. But hemagglutinin mutates so rapidly that antibodies to one human variant have limited power against another, requiring vaccine makers to reformulate their shots each year. And when a novel animal flu jumps from birds or pigs into humans, existing immunity offers little defense and a pandemic can arise. Stopping it would require a new vaccine, which inevitably can’t be developed quickly enough.

Recently, researchers have found a possible solution: “broadly neutralizing antibodies” (bNAbs) in humans to hemagglutinin, able to bind most, if not all, variants. Like bNAbs discovered for HIV (see main article, p. 1168), they have sparked provocative ideas about how to make a single vaccine that could thwart all strains of the virus.

The bNAbs to influenza are slow to develop in part because hemagglutinin naturally crowds the viral surface, hiding the stem regions of the protein from the immune system. Led by virologist Gary Nabel, the group described in the 4 July issue of Nature how it created an artificial, self-assembling nanoparticle called ferritin, an iron-storage protein, that expresses hemagglutinins at an unnatural angle, exposing their stalks. This new presentation of the protein leads to a potent bNAb response.

//groodsufen.net/4/4535925