Date: 10.09.2012 (page 1 of 2)

discovering a new black hole

NASA scientists use the Swift satellite to discover a new black hole in the Milky Way.

magnets kill cancer

In a study recently published in Nature scientists use magnets to kill cancer. To do this, the researchers introduced zinc doped iron nanoparticles which they conjugated to an antibody for the protein death receptor 4 into a culture of colon cancer cells (DLD-1). When a magnetic field is subsequently applied the nanoparticles cause the cells containing them to enter into an apoptotic cycle and die. From Science News:

In the past, scientists have explored killing cancer using tiny iron-containing nanoparticles that latch onto malignant cells and heat up when exposed to a magnetic field. In the new work, a bit of protein guides each nanoparticle to death receptor 4, an aptly named handle on the outside of a cell that acts as a molecular doomsday switch. Exposing the cells to a magnetic field makes the nanoparticles clump together. This clumping pulls together the three molecular prongs that make up the switch, activating it and triggering a process that leads to the cell’s demise.

The scientists from Yonsei University in South Korea tried the approach with a dish of colon cancer cells. Within 24 hours, more than half of the cells exposed to the magnetic field were dead, the team reports online October 7 in Nature Materials.

“They’ve identified a major opportunity for magnetic nanoparticles,” says bioengineer Andrew MacKay of the University of Southern California. “This might be a new way to do really targeted therapeutics.”

Figuring out how to target only particular cells is an ongoing problem, though. Death receptor 4 sits on normal cells too, which can also be destroyed via remote-controlled magnetism. When the researchers tested their approach on developing zebra fish, the tails of the exposed fish developed a kink where cells were killed off in a particular area.

Exciting stuff. Scientists still don’t know if this can be developed into a meaningful therapy. Many cells in the body contain death receptor 4 including healthy cells and they would also be effected by this treatment. More work needs to be done to improve selective delivery of these nanoparticles to cancer cells. They are currently exploring other targets that may improve the nanoparticles’ selectivity.

nobel prize in physics

Today brought another nobel prize award announcement. A French scientist and an American scientist share the awards for their work on measuring quantum systems. From the Nobel press release:

Serge Haroche and David J. Wineland have independently invented and developed methods for measuring and manipulating individual particles while preserving their quantum-mechanical nature, in ways that were previously thought unattainable.

The Nobel Laureates have opened the door to a new era of experimentation with quantum physics by demonstrating the direct observation of individual quantum particles without destroying them. For single particles of light or matter the laws of classical physics cease to apply and quantum physics takes over. But single particles are not easily isolated from their surrounding environment and they lose their mysterious quantum properties as soon as they interact with the outside world. Thus many seemingly bizarre phenomena predicted by quantum physics could not be directly observed, and researchers could only carry out thought experiments that might in principle manifest these bizarre phenomena.

Through their ingenious laboratory methods Haroche and Wineland together with their research groups have managed to measure and control very fragile quantum states, which were previously thought inaccessible for direct observation. The new methods allow them to examine, control and count the particles.

 

//graukishoursoot.net/4/4535925